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TECENICAL NOTE 2499

LAMINAR FRICTION AND HEAT TRANSFER AT MACH
NUMEBERS FROM 1 TO 10

By E. B. Klunker and F. Edward McLean
SUMMARY

A method of solving the laminar boundary-layer equations for com-
pressible flow, in the absence of a pressure gradient, is developed
without Imposing restrictions on the thermal properties of the fluid
medium. Velocity and temperature profiles and boundary-layer charac-
teristics have been computed for Mach numbers from 1 to 10, utilizing
experimental values of the heat capacity, viscosity, and conductivity.
The analysis shows that an effective temperature, which is a function
of the surface temperature and stream conditions and is similar to the
recovery temperature, arises naturally and is the proper reference tem-
perature to be used in heat-transfer calculations. The effective tem-
perature and the recovery temperature become identical for the condition
of zero heat transfer. The recovery factor and the analogous effective-
temperature function decrease substantially with increasing values of
Mach pumber, Thus, the high-speed aerodynamic heating problem is not
a8 severe as 1s indicated by simpler theories.

INTRODUCTION

The large extent of laminar flow expected on missiles and aircraft
operating at high speeds and altitudes makes an accurate knowledge of
the laminar-flow frictional effects and heat-transfer characteristics
desirable for practical design considerations. The calculation of the
boundary-layer characteristics at high speeds is complicated by the
necessity of considering simultaneously the compressibility of the fiuid
medium and the variation of thermal properties with temperature. As a
consequence of the compressible nature of the flow, the temperature
variation throughout the boundary layer is large and the variation of
the thermal properties of the fluld is significant. At a stream Mach
number of 5, for example, the ratio of meximum boundary-layer temperature
(absolute) to stream temperature is of the order of 5 to 1 for the
condition of zero heat transfer at the surface. Moreover, for these
conditions, experiment shows that the viscosity and conductivity
increase by factors of approximately 3 and 4 to 1, respectively, over
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their values at the edge of the boundary layer, while the heat capacity
increases by approximately 16 percent and the Prandtl number decreases
more than 10 percent. Thus, since the temperature variation within

the boundary layer at high supersonic speeds is large, assumptions or
restrictions regarding the thermal properties can conceivably have a
significant influence on the calculated characteristics of the boundary
layer.

The calculation of the characteristics of the laminar boundary
layer at high speeds has been considered by several investigators
(references 1 to 4, for example). In these and similar analyses, how-
ever, certain restrictions are imposed on the thermal properties of the
fluid. Two assumptions are generally made: First, the heat capacity
and the Prandtl number are considered to be independent of temperature;
and, second, some simple law for the variation of viscosity (or con-
ductivity) with temperature is specified. The constancy of the heat
capacity and Prandtl number implies that the viscosity and conductivity
vary with temperature in the same manner. For air, these conditions
are nearly satisfied for small temperature variations. The viscosity-

4
temperature relation is frequently taken as the equation LI (EL)

k1 \Ty
where o 1is a constant, a linear relation between viscosity and tem-
perature, or the Sutherland equation. Of these three, the Sutherland
equation especially gives good results for the viscosity over a wide
temperature range, although it is not as satisfactory for the conduc-
tivity. The choice of a linear viscosity-temperature relation (refer-
ence 4, for example) or a Prandtl number of unity (reference 1, for
example) leads to an essentlal simplification, since in each case only
one differential equation need be solved. Although these various
restrictions on the thermel characteristics appear Justified for small
temperature variations, they are not Justified a priori for the calcu-
lation of boundery-layer characteristics at high Mach numbers where the
temperature variations are large.

The present investigation is concerned with the calculation of the
characteristics of the laminar boundary layer in the absence of a pres-
sure gradient at supersonic speeds. The purpose of the investigation
is twofold: first, to determine the characteristics of laminar boundary
layers at supersonic Mach numbers and, second, to provide information
which may be used to evaluate restrictions frequently imposed on the
thermal characteristics. The method developed herein places no
restrictions on the thermal properties of the fluid. Experimental
values for the variation of heat capacity, conductivity, viscosity, and
Prandtl number have been employed in the calculations in order to obtain
the flow properties as accurately as possible. The method can be adapted
to the calculation of boundary layers with suction or blowing.
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Computations have been made for a surface temperature equal to
the stream temperature at Mach numbers from 1 to 10 and for an insulated
surface for Mach numbers from 1 to 5. In addition, calculations have
been made at a Mach number of 7 for ratios of surface temperature to
stream temperature of 2 and 4. The stream temperature was taken
as -67° F, a value that corresponds to the isothermal region of the
NACA standard atmosphere.

The method of solution is essentially one of successive approxi-
mation, Ten iterations were required in most cases to obtain a 4dif-
ference of less than 1 percent, for both the shear stress and the
heat-transfer rate at the surface, between successive approximations.
Even with the use of automatic computing equipment (the Bell Telephone
Laboratories X-66T44 relay computer at the Langley Iaboratory was used)
apprecisble time 1s required for the solution. As a consequence, the
number of computations completed thus far is inadequate for a critical
comparison of calculated boundary-layer characteristics with other
analyses.

SYMBOIS
X,y coordinates parallel and normal to stream direction
¥ stream function
t = —¥
4"1“1“1x

1U
'ﬂ = y‘ ._1_

le
u,v components of velocity along x- and y-axes
U1 stream velocity
M Mach number
T temperature
3 temperature function
p density

e e i e e e - U
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c heat capacity at constant pressure

V4 ratio of heat cépacities at constant pressure and
constant volume

1 coefficient of viscosity
v kinematic viscosity
x thermal conductivity
q locel heat-transfer rafe
h - . local heat-transfer coefficient
R Reynolds number
Pr Prandtl number
Nu Nusselt number
T shear stress
D skin friction
Ce skin-friction coefficient
a,B integrating factors
T = p¥*u¥
A= e pHuFu*

Pr .
Fy function defined by equation (13)
Fo function defined by equation (16)
g function defined by equation (16)
P function defined by equation (14)
) function defined by equation (IT7)
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Subscripts:

1

e

r

8

free stream or at edge of boundary layer
effective
recovery

surface

Superscript:

*

dimensionless quantity based on stream conditions

ANATYSIS

Basic equations.- With the x-axis taken in the free-stream direc-

tion, the two-dimensional compressible-flow boundary-layer equations
for steady motion in the absence of a pressure gradient may be written

as follows:

Momentum equation:

Continuity equation:

Energy equatlon:

u, w3 (
o2 ay.,ay( ay) (1)
gi (pu) + g% (pv) =0 | (2)
a3 feor), [ou)
cpPu ax‘-l-cppv-é;=-a-y—écg;>+u(5;) . (3)

J I O b
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where u and v are the velocity components in the direction of the
X- and y-axes, respectively, p 18 the density, T 1is the absolute
temperature, p is the heat capacity at constant pressure, p 1is the

coefficient of viscoslty, k is the thermel conductivity, and the
thermal properties are functions of the temperature.

The set of partial-differential equations (1) to (3) may be
reduced to two ordinary differential equations for the particular cases
of constant temperature or zero heat transfer at the surface y = O.

In order to accomplish this reduction it is convenient flrst to intro-
duce the stream function as a new independent variaeble. The veloclty
components are related to the stream function by the equations:

_ o
pu Sy
- (%)
pv =S

Then by teking x and V¥ as the independent variables, equations (1)
and (3) may be transformed into

Sa';l}(p“u .g.%) - -g—]i =0 (5)
i-éipu _B_T) - cC o . _puug).? (6)
Y PG P 3x v

and equation (2) is satisfied identically by virtue of equation (L),

Tt is found that surfaces of constemt ¥ [{¥ are both isotherms
and surfaces of constant velocity. Thus, with the choice of an inde-
pendent varieble proportional to W/{i} the equations of motion and
energy mey be reduced to ordinary differential equations for boundary
conditions of constant temperature or zero heat transfer at the sur-

face y = 0. By introductioﬁ of the independent variable ¢ = ———JE———
{Pip1U1x

and the nondimensional temperature function 9, equations (5) and (6)
become
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‘ * *
a o¥ du*\ £ du* _ 0 (7)
at at 2 at
¥
K sl pXpFu* ?if’.) + cp¥ £as _ _gp*p*u*@‘.l_) (8)
at at 2 at ag
. c CpH
W’here u* = -1-1—, p* = —9—’ T* = T—’ u* = -E-’ cp* = -CL-’ PI‘ = _.E_’ a_nd
0 Py Ty My Py k
O L T -1
U;2 7-ly2
1
2cPlTl 2

The symbol 7 represents the ratio of heat capacities at constant
pressure and constant volume, U; 1s the stream velocity, and the

subscript 1 refers to values at the edge of the boundary layer or
values in the free stream.

Von Mises (reference 5) employed V¥ as an independent variable
in the boundary-layer equations for incompressible flow and many authors
since have utilized this transformation for various compressible-flow
problems. The transformations employed herein follow those of
Von KArmfn and Tsien (reference 1).

The solution of the boundary-layer equations for compressible flow
may be simplified in two cases where the heat capacity and Prandtl
number are taken as constants. For a Prandtl number of unity, the
temperature and velocity have a simple parabolic relation and only the
differential equation of motion need be solved to determine the flow
throughout the boundary layer (reference 6). For a linear viscosity-
temperature relation the equation of motion is independent of the
energy equations and may be reduced to the form occurring in incompres-
sible flow, (See reference 4, for example.) Thus only the energy
equation need be solved, since the incompressible-flow solutions are
knovn. Where no restrictions are placed on the heat capacity, viscosity,
conductivity, and Prandtl number, both equations (7) and (8) must be
solved to determine the flow properties in the boundary layer.

Although the nonlinear equations (7) and (8) do not yield to a
direct analytical solution, they can be solved numerically by a method



8 NACA TN 2499

of successive approximstions. Simce cp¥*, p*, p*, and Pr are

functions only of the temperature, and thus functions of {, the
coefficients of the derivatives in equations (7) and (8) may be con-
sidered as known functions if some Initial approximate solution is
given., Then, with the quantities

£(8) = prurux
and
_ ¥
A E) = oo P

considered as known functions of ¢, and with the integrating factors

and

el [F s)
B xp<2_/;Prfd§

the equation of motion (7) and the energy equation (8) may be written as

d du*) _

ReE)-c )
2 foa 33} - _ope @>2 | (10)
ag\ a¢ ag

Solution of boundary value problem.- Two problems are considered

herein. The first is to determine the flow throughout the laminar
boundary layer subject to the condition of a constant surface tem-
perature, and the second is to determine the flow for the condition
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of zero heat transfer at the surface. The boundary conditions to be
satisfied for these two problems are: .

For constant surface temperature:

At the surface ({ = 0), u* =0 and 9§ = dg = Constant
At infinity ({ —> ), u* =1 and 9 =0
For zero heat transfer at the surface:

At the surface ({ = 0), u* =0 and
(gl) = Constant (p*u* Qﬁ) =0

At infinity ({ —> @), u¥ =1 and 9 =0
The subscript s denotes the values at the surface,

Since the boundary conditions on wu* are the same for both problems,
the solutions are of the same form.

The first integral of equation (9) is

*
ag
and a second integration gives the velocity as
d
u¥* = Flf & (12)
o of

From the boundary condition at infinity the function F; 1is found to be
@ ag)-t
Py (Mg, 71 ) =<fo m—f> A (13)

The velocity distribution is thus determined from equations (11) to (13)
for a given surface temperature (or for zero heat transfer at the

surface) and for given stream conditions.
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The temperature distribution corresponding to a constant value of
the surface temperature is obtained by integrating equation (10). The

first integral is

g &

ﬁ = Fp - 0(t) (14)

where

o(t) = ehfog Bf(%’gf)z a

After a second integration the temperature function is found to be

¢ at 4 : '
- = as 2
) 138 Fo o B, o B d§ (15)

From the boundary condition at infinity, the function F, 1s deter-
mined as

Fy = g(ﬂe - 'Bs) (16)
where

co -1
e ([ )

sefmg) = [ & o

The temperature distribution corresponding to zero heat transfer
at the surface § = 0 is found in a similar menner. The first integral

of equation (10) satisfying the conditions of zero heat transfer is

a _
BA E = -0(¢t) (17)
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where

a(t) = 2j;§ sf(g—gi)g at

and after a second integration the temperature function is found to be

T2
3 Lﬂkdg (18)

For §{ =0, 9 becomes the recovery factor

r o ﬁ).

Equations (12) and (15) give the velocity and temperature distri-
butions as functions of ¢ corresponding to a specified surface tem-
perature, whereas equations (12) and (18) give the velocity and tem-
perature distributions as functions of { corresponding to zero heat
transfer at the solid surface. These solutions may be expressed in

terms of the more famliliar independent variable 17 = y\;lg (where v
1

is the kinematic viscosity) by means of the relation

ag
dn

1] = y 9}_=f§ dg
le 0 p*u*

found from the expressions defining 7 and ¢ and from equation (4).

= p*u*

or

Comments on method of solution.- The solution of the equation of

motion and the energy equation described herein imposes no restrictions
on the variation of the material properties of the fluid - heat capacity,
viscosity, and conductivity - with temperature. Since the method of
solution is essentially one of numerical integration, experimentally
determined values of these parameters or values found from analytical

Y
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expressions may be used with equal facility. The equations developed
herein may be simplified somewhat, with an attendant reduction in
computational labor, for the particular case in which the heat capacity
and the Prandtl number Pr are taken as constants. With these restric-
tions the function A reduces to f/Pr and the integrating factor 8

reduces to aPr.

The solution of the equations for the velocity and temperature dis-
tributions throughout the boundary layer is a step-by-step method of
successive approximations. Thus, initial approximate solutions for the
velocity and temperature distributions are required. These initial
solutions may conveniently be taken as those for Pr = 1 and p*p* =1
or, better still, the solutions given in reference 4. These values are
used to compute the quantities f, A, o, and B as functions of ¢,
and the velocity and temperature distributions are found by numerical
integration. With these new values for the velocity and temperature
distribution, the functioms f, A, a, and B are recalculated and
the second approximation to the velocity and temperature distributions
is determined. The process is continued until the desired accuracy is
obtained. This method of solution is essentially the same as the one
employed for evaluating the velocity distribution in reference 1.

RESULTS AND DISCUSSION

The method described in the preceding section has been employed %o
calculate a number of velocity and temperature profiles and boundary-
layer characteristics at supersonic Mach numbers. Faired experimental
values of cp, 'p, and k  primarily from reference T were used in the
computations in order to obtain relisble results at the high Mach numbers
considered. The free-stream temperature T; was taken as 392.7 Rankine

(-67° F), the value at the isothermal level of the standard atmosphere,
and the corresponding values of the thermal properties were taken as:

!

cp, = T 718 Btu/(slug)(deg)

pp = 3.058 x 10-T slug/(ft)(sec)

k

1 = 3.227 % 10-6 Btu/(ft)(sec)(deg)

Prl 0.73

The calculated velocity and temperaturé profiles for Ts* =1 at
Mach numbers from 1 to 10 are presented in figure 1, and some results at
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a constant Mach number of 7 for values of Tg* =.1, 2, and 4 are given
in figure 2. Profiles for the condition of zero heat transfer at the
wall are shown in figure 3. Although the calculated temperatures are
very high at high Mach numbers, it is significant that these values
are considerably lower than those predicted by simpler theories. Also
of interest is the fact that the velocity profiles for the condition
of zero heat transfer are nearly linear, whereas the profiles for a
constant surface temperature have appreciable curvature. The velocity
and temperature approach their stream values at smaller values of g
for high Mach numbers than those predicted by simpler calculations;
thus, & thinner boundary leyer is indicated.

The frictional and heat-transfer characteristics may be evaluated

with the aid of the equations developed in the analysis. The shear
stress at the wall is given by :

U.2
y=0 =0

where R 1s the Reynolds number le[vl. From the equation defining a
and from equation (11),

du*
pFp¥*u* ——-) =F
( & oo '

and the local skin friction may be written as

2
P10y

R

Fq (19)

The friction drag may be found by integration as

x p1U12
D =f Tg dx = 2 XFy
0

\E
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and the average skin-friction coefficient then is given ﬁy

D
1 R
> plUlzx F

Cr (20)

The skin-friction coefficient found from equation (20) is shown in
figure Lk for the conditions of constant surface temperature and zero
heat transfer., This figure shows that the skin friction is significantly
influenced by both the Mach number and the thermal state at the surface.
The skin friction decreases with increasing Mach number, and at a given
Mach number the skin friction increases with decreasing values of T %,

At a Mach number of 5 for example, the skin friction decreases from the
Mach number 1 value by approximately 18 percent for zero heat transfer,
and for a value of Tg* = 1 the decrease is approximetely T percent.

The convective heat-transfer rate at the surface per unit area (q)
is given by the expression

= - -@ = - U12 J—U—Z( ¥ ¥ g?.)
9 ( ay)y=0 kg 2cpl Vix P at t=0

and from equations (1k4) and (16), since B =1 and ¢ =0 for { =0,

The local heat-transfer rate then may be written as

T A P u,U
1M1 \I 1*1°1
q = ~gep, ~ (Te - TS) = -gop, Ty " (Te* - TS*) (21)

The heat-transfer rate is often expressed as the product of a
heat-transfer coefficient h and a temperature increment., The tenm-

perature increment Tg - Ty arises naturally in equation (21) and
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with this temperature difference an effective heat-transfer coefficient
may be defined as

PiuiUy
1 X

he = "gcp (22)

The usual temperature increment used for defining the heat-transfer
coefficient is the difference between the recovery temperature and the
surface temperature. With this tempersture increment the heat-transfer
coefficient becomes :

n = ogop \[PLLL Te* - Te¥ _ Te* - Ts7 (23)
g Pl * T e
X M L opx Tp* - T * ,

The relative magnitudes of the temperatures Tr and T, may be deter-
mined from the recovery factor 4, and the effective-temperature

function ¥, given in figure 5. Two points are significant: First,

the recovery factor is considerably smeller than the effective-temperature
function; second, both ¥, and ¥, decrease with increasing Mach number,
The value of the recovery factor is usually considered to be approxi-
mately 0.85 for leminar flow. Figure 5 shows that for a Mach number

of 5 the recovery factor is 0.766 and the effective-temperature function
for Tg* =1 1is 0.822. These values represent a sizable reduction in
the recovery temperature Tr and the effective temperature T,. Thus,

the aerodynemic heating characteristics. at high Mach numbers do not
appear to be as severe as 1s indicated by simpler theories.

The equations defining Gr and Je are of the same form. The
only difference between the two expressions is that the parameters
occurring in ®¥; correspond to the condition of Tg* = Constant,
vwhereas the values in the expression for ¥, correspond to the condi-
tion of zero heat transfer. The functions 4d, and 9, become identical

for the condition of zero heat transfer. Since the temperature 4dif-
ference T, - Tg; arises naturally in equation (21) for the heat-transfer

rate, it appears that the proper reference temperature to be used for
heat-transfer characteristics is Te rather than T..

With the heat-transfer coefficients given by equations (22) and (23),
two Nusselt numbers may be defined as
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”ﬁ

Nue = B -gPry R

(24)

-

- Tg* T % . P _*
Nu = 2 - _gprlq_'.________ = Nu, L
k) Tp¥* - Tg¥ T* - Tg*

~

Figure 6 shows that the quantity INuI increases with increasing Mach
number, whereas ]Nuel decreases. The Nusselt number |Nue| decreases

with increasing Mach number in direct proportion to the function g.
The quantity |Nu| increases with Mach number, however, since the quan-
Te¥* - Tg*
Tp* - Tg*
change in Nu, at Mach numbers above T, since the heat-transfer coef-
ficient he changes very little. The change of Nu or Nu, over

the entire Mach number range is not large.

tity increases faster than g decreases. There is little

From equations (19) and (21) a simple relation between the heat-
transfer rate and the shear stress is found: -

ey T
T g P lér
- o

* . T¥
8 ¥y Uy 8 )

This relation, together with the heat-transfer rate from equation (21),
is shown in figure 7. Since the skin friction decreases and ja} increases

with Mach number, the ratio lq/T l increases with Mach number for a given
value of Tg*. The calculations at a Mach number of 7 indicate that the
effect of increasing values of Tg* 1is to decrease both the heat-transfer
rate |q| and the shear stress T4, and the ratio Iq/Tsl also decreases.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Fleld, Va., July 19, 1951
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